TuGraph-DataX
此文档主要介绍 TuGraph DataX 的安装编译和使用示例
1.简介
TuGraph 在阿里开源的 DataX 基础上添加了 TuGraph 的写插件以及 TuGraph jsonline 数据格式的支持,其他数据源可以通过 DataX 往 TuGraph 里面写数据。 TuGraph DataX 介绍 https://github.com/TuGraph-family/DataX,支持的功能包括:
- 从 MySQL、SQL Server、Oracle、PostgreSQL、HDFS、Hive、HBase、OTS、ODPS、Kafka 等各种异构数据源导入 TuGraph
- 将 TuGraph 导入相应的目标源 (待开发)
DataX 原始项目介绍参考 https://github.com/alibaba/DataX
2.编译安装
git clone https://github.com/TuGraph-family/DataX.git
yum install maven
mvn -U clean package assembly:assembly -Dmaven.test.skip=true
编译出来的 DataX 文件在 target 目录下
3. 导入TuGraph
3.1.文本数据通过DataX导入TuGraph
我们以 TuGraph 手册中导入工具 lgraph_import 章节举的数据为例子,有三个 csv 数据文件,如下:
actors.csv
nm015950,Stephen Chow
nm0628806,Man-Tat Ng
nm0156444,Cecilia Cheung
nm2514879,Yuqi Zhang
movies.csv
tt0188766,King of Comedy,1999,7.3
tt0286112,Shaolin Soccer,2001,7.3
tt4701660,The Mermaid,2016,6.3
roles.csv
nm015950,Tianchou Yin,tt0188766
nm015950,Steel Leg,tt0286112
nm0628806,,tt0188766
nm0628806,coach,tt0286112
nm0156444,PiaoPiao Liu,tt0188766
nm2514879,Ruolan Li,tt4701660
然后建三个 DataX 的 job 配置文件:
job_actors.json
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "txtfilereader",
"parameter": {
"path": ["actors.csv"],
"encoding": "UTF-8",
"column": [
{
"index": 0,
"type": "string"
},
{
"index": 1,
"type": "string"
}
],
"fieldDelimiter": ","
}
},
"writer": {
"name": "tugraphwriter",
"parameter": {
"url": "bolt://127.0.0.1:27687",
"username": "admin",
"password": "73@TuGraph",
"graphName": "default",
"labelType": "VERTEX",
"labelName": "actor",
"batchNum": 1000,
"properties": ["aid", "name"]
}
}
}
]
}
}
job_movies.json
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "txtfilereader",
"parameter": {
"path": ["movies.csv"],
"encoding": "UTF-8",
"column": [
{
"index": 0,
"type": "string"
},
{
"index": 1,
"type": "string"
},
{
"index": 2,
"type": "string"
},
{
"index": 3,
"type": "string"
}
],
"fieldDelimiter": ","
}
},
"writer": {
"name": "tugraphwriter",
"parameter": {
"url": "bolt://127.0.0.1:27687",
"username": "admin",
"password": "73@TuGraph",
"graphName": "default",
"labelType": "VERTEX",
"labelName": "movie",
"batchNum": 1000,
"properties": ["mid", "name", "year", "rate"]
}
}
}
]
}
}
job_roles.json
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "txtfilereader",
"parameter": {
"path": ["roles.csv"],
"encoding": "UTF-8",
"column": [
{
"index": 0,
"type": "string"
},
{
"index": 1,
"type": "string"
},
{
"index": 2,
"type": "string"
}
],
"fieldDelimiter": ","
}
},
"writer": {
"name": "tugraphwriter",
"parameter": {
"url": "bolt://127.0.0.1:27687",
"username": "admin",
"password": "73@TuGraph",
"graphName": "default",
"labelType": "EDGE",
"labelName": "play_in",
"batchNum": 1000,
"properties": ["SRC_ID", "role", "DST_ID"],
"startLabel": {"type": "actor", "key": "SRC_ID"},
"endLabel": {"type": "movie", "key": "DST_ID"}
}
}
}
]
}
}
./lgraph_server -c lgraph_standalone.json -d 'run'
启动 TuGraph 后依次执行如下三个命令:
python3 datax/bin/datax.py job_actors.json
python3 datax/bin/datax.py job_movies.json
python3 datax/bin/datax.py job_roles.json
3.2.MySQL数据通过DataX导入TuGraph
我们在 test
database 下建立如下电影 movies
表
CREATE TABLE `movies` (
`mid` varchar(200) NOT NULL,
`name` varchar(100) NOT NULL,
`year` int(11) NOT NULL,
`rate` float(5,2) unsigned NOT NULL,
PRIMARY KEY (`mid`)
);
往表中插入几条数据
insert into
test.movies (mid, name, year, rate)
values
('tt0188766', 'King of Comedy', 1999, 7.3),
('tt0286112', 'Shaolin Soccer', 2001, 7.3),
('tt4701660', 'The Mermaid', 2016, 6.3);
建立一个 DataX 的 job 配置文件
job_mysql_to_tugraph.json
配置字段方式
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "root",
"password": "root",
"column": ["mid", "name", "year", "rate"],
"splitPk": "mid",
"connection": [
{
"table": ["movies"],
"jdbcUrl": ["jdbc:mysql://127.0.0.1:3306/test?useSSL=false"]
}
]
}
},
"writer": {
"name": "tugraphwriter",
"parameter": {
"url": "bolt://127.0.0.1:27687",
"username": "admin",
"password": "73@TuGraph",
"graphName": "default",
"labelType": "VERTEX",
"labelName": "movie",
"batchNum": 1000,
"properties": ["mid", "name", "year", "rate"]
}
}
}
]
}
}
写简单 sql 方式
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "root",
"password": "root",
"connection": [
{
"querySql": [
"select mid, name, year, rate from test.movies where year > 2000;"
],
"jdbcUrl": ["jdbc:mysql://127.0.0.1:3306/test?useSSL=false"]
}
]
}
},
"writer": {
"name": "tugraphwriter",
"parameter": {
"url": "bolt://127.0.0.1:27687",
"username": "admin",
"password": "73@TuGraph",
"graphName": "default",
"labelType": "VERTEX",
"labelName": "movie",
"batchNum": 1000,
"properties": ["mid", "name", "year", "rate"]
}
}
}
]
}
}
./lgraph_server -c lgraph_standalone.json -d 'run'
启动 TuGraph 后执行如下命令:
python3 datax/bin/datax.py job_mysql_to_tugraph.json
4.导出TuGraph
4.1.配置样例
TuGraph支持使用DataX导出数据,使用如下配置即可将数据导出到文本数据中
{
"job": {
"setting": {
"speed": {
"channel":1
}
},
"content": [
{
"reader": {
"name": "tugraphreader",
"parameter": {
"username": "admin",
"password": "73@TuGraph",
"graphName": "Movie_8C5C",
"queryCypher": "match (n:person) return n.id,n.name,n.born;",
"url": "bolt://127.0.0.1:27687"
}
},
"writer": {
"name": "txtfilewriter",
"parameter": {
"path": "./result",
"fileName": "luohw",
"writeMode": "truncate"
}
}
}
]
}
}
使用这个配置文件,可以把TuGraph Movie_8C5C子图中person节点的id,name和born属性全部导出出来, 导出到当前目录下的result目录中,文件名称为luohw+随机后缀。
4.2.参数说明
在使用DataX导出TuGraph数据时,需要将reader设置为tugraphreader并配置以下5个参数:
-
url
- 描述:TuGraph的bolt server地址
- 必选:是
- 默认值:无
- 描述:TuGraph的bolt server地址
-
username
- 描述:TuGraph的用户名
- 必选:是
- 默认值:无
- 描述:TuGraph的用户名
-
password
- 描述:TuGraph的密码
- 必选:是
- 默认值:无
- 描述:TuGraph的密码
-
graphName
- 描述:所选取的需要同步的TuGraph子图
- 必选:是
- 默认值:无
- 描述:所选取的需要同步的TuGraph子图
-
queryCypher
- 描述:通过cypher语句读取TuGraph中的数据
- 必选:否
- 默认值:无
- 描述:通过cypher语句读取TuGraph中的数据